Difference between revisions of "Gegenbauer C"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Gegenbauer polynomial of degree $n$ and order $\lambda$ is the coefficient of $t^n$ in the expansion of $\dfrac{1}{(1-2xt+t^2)^{\lambda}}$ in the sense that $$\dfrac{1}{(...")
 
m (Properties)
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The Gegenbauer polynomials satisfy the differential equation
 +
$$(1-x^2)\dfrac{d^2y}{dx^2} -(2\lambda+1) x \dfrac{dy}{dx} + n(n+2\lambda)y=0.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
Line 16: Line 24:
 
$$\displaystyle\int_{-1}^1 (1-x^2)^{\lambda-\frac{1}{2}} C_n^{\lambda}(x)C_m^{\lambda}(x) dx = 2^{1-2\lambda} \pi \dfrac{\Gamma(n+2\lambda)}{(n+\lambda)(\Gamma(\lambda))^2\Gamma(n+1)}\delta_{mn},$$
 
$$\displaystyle\int_{-1}^1 (1-x^2)^{\lambda-\frac{1}{2}} C_n^{\lambda}(x)C_m^{\lambda}(x) dx = 2^{1-2\lambda} \pi \dfrac{\Gamma(n+2\lambda)}{(n+\lambda)(\Gamma(\lambda))^2\Gamma(n+1)}\delta_{mn},$$
 
where $\delta_{mn}=0$ if $m\neq 0$ and $\delta_{mn}=1$ when $m=n$.
 
where $\delta_{mn}=0$ if $m\neq 0$ and $\delta_{mn}=1$ when $m=n$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$(n+2)C_{n+2}^{\lambda}(x)=2(\lambda+n+1)xC_{n+1}^{\lambda}(x)-(2\lambda+n)C_n^{\lambda}(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$nC_n^{\lambda}(x) = 2\lambda(xC_{n-1}^{\lambda+1}(x) - C_{n-2}^{\lambda+1}(x)).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$(n+2\lambda)C_n^{\lambda}(x) = 2\lambda(C_n^{\lambda+1}(x)-xC_{n-1}^{\lambda+1}(x))$$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$nC_n^{\lambda}(x) = (n-1+2\lambda)xC_{n-1}^{\lambda}(x) - 2\lambda(1-x^2)C_{n-2}^{\lambda-1}(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$C_n^{\lambda '}(x) = 2\lambda C_{n+1}^{\lambda+1}(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:47, 4 October 2014

The Gegenbauer polynomial of degree $n$ and order $\lambda$ is the coefficient of $t^n$ in the expansion of $\dfrac{1}{(1-2xt+t^2)^{\lambda}}$ in the sense that $$\dfrac{1}{(1-2xt+t^2)^{\lambda}} = \sum_{k=0}^{\infty} C_k^{\lambda}(x)t^k.$$

Properties

Theorem: The Gegenbauer polynomials satisfy the differential equation $$(1-x^2)\dfrac{d^2y}{dx^2} -(2\lambda+1) x \dfrac{dy}{dx} + n(n+2\lambda)y=0.$$

Proof:

Theorem: The following formula holds: $$C_n^{\lambda}(x) = \displaystyle\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \dfrac{\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k}.$$

Proof:

Theorem (Orthogonality): The following formula holds: $$\displaystyle\int_{-1}^1 (1-x^2)^{\lambda-\frac{1}{2}} C_n^{\lambda}(x)C_m^{\lambda}(x) dx = 2^{1-2\lambda} \pi \dfrac{\Gamma(n+2\lambda)}{(n+\lambda)(\Gamma(\lambda))^2\Gamma(n+1)}\delta_{mn},$$ where $\delta_{mn}=0$ if $m\neq 0$ and $\delta_{mn}=1$ when $m=n$.

Proof:


Theorem: The following formula holds: $$(n+2)C_{n+2}^{\lambda}(x)=2(\lambda+n+1)xC_{n+1}^{\lambda}(x)-(2\lambda+n)C_n^{\lambda}(x).$$

Proof:

Theorem: The following formula holds: $$nC_n^{\lambda}(x) = 2\lambda(xC_{n-1}^{\lambda+1}(x) - C_{n-2}^{\lambda+1}(x)).$$

Proof:

Theorem: The following formula holds: $$(n+2\lambda)C_n^{\lambda}(x) = 2\lambda(C_n^{\lambda+1}(x)-xC_{n-1}^{\lambda+1}(x))$$.

Proof:

Theorem: The following formula holds: $$nC_n^{\lambda}(x) = (n-1+2\lambda)xC_{n-1}^{\lambda}(x) - 2\lambda(1-x^2)C_{n-2}^{\lambda-1}(x).$$

Proof:

Theorem: The following formula holds: $$C_n^{\lambda '}(x) = 2\lambda C_{n+1}^{\lambda+1}(x).$$

Proof:

Theorem: The following formula holds:

Proof: