Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The exponential integrals are $$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} dt$$ and $$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$ Simple properties of integrals imp...")
 
Line 3: Line 3:
 
and
 
and
 
$$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$
 
$$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$
Simple properties of integrals imply that $E_1(x) = -\mathrm{Ei}(-x)$.
+
Simple properties of integrals imply that $E_1(x) = -\mathrm{Ei}(-x)$. The exponential integral is related to the [[logarithmic integral]] by the formula
 +
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$

Revision as of 20:58, 4 October 2014

The exponential integrals are $$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} dt$$ and $$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$ Simple properties of integrals imply that $E_1(x) = -\mathrm{Ei}(-x)$. The exponential integral is related to the logarithmic integral by the formula $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$