Difference between revisions of "Exponential integral E"
From specialfunctionswiki
(Created page with "The exponential integrals are $$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} dt$$ and $$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$ Simple properties of integrals imp...") |
|||
Line 3: | Line 3: | ||
and | and | ||
$$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$ | $$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$ | ||
− | Simple properties of integrals imply that $E_1(x) = -\mathrm{Ei}(-x)$. | + | Simple properties of integrals imply that $E_1(x) = -\mathrm{Ei}(-x)$. The exponential integral is related to the [[logarithmic integral]] by the formula |
+ | $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$ |
Revision as of 20:58, 4 October 2014
The exponential integrals are $$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} dt$$ and $$E_1(x) = \int_x^{\infty} \dfrac{e^{-t}}{t} dt.$$ Simple properties of integrals imply that $E_1(x) = -\mathrm{Ei}(-x)$. The exponential integral is related to the logarithmic integral by the formula $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$