Difference between revisions of "Lerch transcendent"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Lerch transcendent $\Phi$ is defined by
 
The Lerch transcendent $\Phi$ is defined by
 
$$\Phi(z,s,a)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a+k)^s}.$$
 
$$\Phi(z,s,a)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a+k)^s}.$$
 +
 +
=Properties=
 +
{{:Lerch transcendent polylogarithm}}

Revision as of 01:08, 21 March 2015

The Lerch transcendent $\Phi$ is defined by $$\Phi(z,s,a)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a+k)^s}.$$

Properties

Theorem

The following formula holds: $$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ where $\Phi$ denotes the Lerch transcendent and $\mathrm{Li_n}$ denotes the polylogarithm.

Proof

References