Difference between revisions of "Airy Bi"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The Airy functions $\mathrm{Ai}$ and $\mathrm{Bi}$ solve the differential equation
+
The Airy function $\mathrm{Ai}$ and "Bairy" function $\mathrm{Bi}$ are given by the formulas
$$y'' - xy = 0.$$
 
 
 
It can be shown that
 
 
$$\mathrm{Ai}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \cos \left( \dfrac{t^3}{3} + xt \right) dt$$
 
$$\mathrm{Ai}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \cos \left( \dfrac{t^3}{3} + xt \right) dt$$
 
and
 
and
Line 10: Line 7:
  
 
[[File:Airybi.png|500px]]
 
[[File:Airybi.png|500px]]
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The function $\mathrm{Ai}$ is a solution to the differential equation
 +
$$y''(z) - zy(z) = 0.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> Suppose that $y$ has the form
 +
$$y(z) = \displaystyle\int_{\gamma} f(t)e^{zt} dt,$$
 +
where $\gamma$ is an as-of-yet undefined contour in the complex plane. Assuming that we may differentiate under the integral it is clear that
 +
$$y''(z)=\displaystyle\int_{\gamma} f(t)t^2 e^{zt} dt.$$
 +
Thus we plug this representation into the differential equation to get
 +
$$(*) \hspace{35pt} y''(z)-zy(z) = \displaystyle\int_{\gamma} (t^2-z)f(t)e^{zt} dt = 0.$$
 +
Now we integrate by parts to see
 +
$$\begin{array}{ll}
 +
\displaystyle\int_{\gamma} zf(t)e^{zt} dt &= \displaystyle\int_{\gamma} f(t) \dfrac{d}{dt} e^{zt} dt \\
 +
&= -f(t)e^{zt} \Bigg |_{\gamma} + \displaystyle\int_{\gamma} f'(t)e^{zt} dt.
 +
\end{array}$$
 +
We will pick the contour $\gamma$ to enforce $f(t)e^{zt} \Bigg |_{\gamma}=0$. We will do this by first determining the function $f$. Plugging this back into the formula $(*)$ yields
 +
$$\begin{array}{ll}
 +
0 &= y''(z) - zy(z) \\
 +
&= f(t)e^{zt} \Bigg |_{\gamma} + \displaystyle\int_{\gamma} (t^2f(t)-f'(t))e^{zt} dt.
 +
\end{array}$$
 +
We have the freedom to choose $f$ and $\gamma$. We will choose $f$ so that
 +
$$t^2f(t)-f'(t)=0.$$
 +
This is a simple differential equation whose solution [http://www.wolframalpha.com/input/?i=t^2f%28t%29-f%27%28t%29%3D0 is]
 +
$$f(t)=c e^{-\frac{t^3}{3}}.$$
 +
So we have derived
 +
$$y(z)=\displaystyle\int_{\gamma} e^{zt - \frac{t^3}{3}} dt.$$
 +
To pick the contour $\gamma$ note that the integrand of $y$ is an [[entire function]] and hence if $\gamma$ is a simple closed curve we would have $y(z)=0$ for all $z \in \mathbb{C}$.
 +
 +
The variable of the integral defining $y$ is $t$ and for $t \in \mathbb{C}$ with $|t|$ very large, the cubic term in the exponent dominates. Hence consider polar form $t=|t|e^{i\theta}$ and compute
 +
$$e^{-\frac{t^3}{3}} = \exp\left( \frac{-|t|^3 e^{3i\theta}}{3} \right).$$
 +
Notice that the inequality $\mathrm{Re} \hspace{2pt} e^{3i\theta} > 0$ forces $\cos(3\theta)>0$ yielding three sectors defined by $\theta$:
 +
$$-\dfrac{\pi}{6} < \theta < \dfrac{\pi}{6},$$
 +
$$\dfrac{\pi}{2}  < \theta < \dfrac{5\pi}{6},$$
 +
$$\dfrac{7\pi}{6} < \theta < \dfrac{3\pi}{2}.$$
 +
Picking the contour $\gamma$ so that it tends to complex infinity inside two of the sectors forces the condition $f(t)e^{zt} \Bigg |_{\gamma}=0$. █
 +
</div>
 +
</div>
 +
 +
=References=

Revision as of 08:15, 14 January 2015

The Airy function $\mathrm{Ai}$ and "Bairy" function $\mathrm{Bi}$ are given by the formulas $$\mathrm{Ai}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \cos \left( \dfrac{t^3}{3} + xt \right) dt$$ and $$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$

500px

500px

Properties

Theorem: The function $\mathrm{Ai}$ is a solution to the differential equation $$y(z) - zy(z) = 0.$$

Proof: Suppose that $y$ has the form $$y(z) = \displaystyle\int_{\gamma} f(t)e^{zt} dt,$$ where $\gamma$ is an as-of-yet undefined contour in the complex plane. Assuming that we may differentiate under the integral it is clear that $$y(z)=\displaystyle\int_{\gamma} f(t)t^2 e^{zt} dt.$$ Thus we plug this representation into the differential equation to get $$(*) \hspace{35pt} y(z)-zy(z) = \displaystyle\int_{\gamma} (t^2-z)f(t)e^{zt} dt = 0.$$ Now we integrate by parts to see $$\begin{array}{ll} \displaystyle\int_{\gamma} zf(t)e^{zt} dt &= \displaystyle\int_{\gamma} f(t) \dfrac{d}{dt} e^{zt} dt \\ &= -f(t)e^{zt} \Bigg |_{\gamma} + \displaystyle\int_{\gamma} f'(t)e^{zt} dt. \end{array}$$ We will pick the contour $\gamma$ to enforce $f(t)e^{zt} \Bigg |_{\gamma}=0$. We will do this by first determining the function $f$. Plugging this back into the formula $(*)$ yields $$\begin{array}{ll} 0 &= y(z) - zy(z) \\ &= f(t)e^{zt} \Bigg |_{\gamma} + \displaystyle\int_{\gamma} (t^2f(t)-f'(t))e^{zt} dt. \end{array}$$ We have the freedom to choose $f$ and $\gamma$. We will choose $f$ so that $$t^2f(t)-f'(t)=0.$$ This is a simple differential equation whose solution is $$f(t)=c e^{-\frac{t^3}{3}}.$$ So we have derived $$y(z)=\displaystyle\int_{\gamma} e^{zt - \frac{t^3}{3}} dt.$$ To pick the contour $\gamma$ note that the integrand of $y$ is an entire function and hence if $\gamma$ is a simple closed curve we would have $y(z)=0$ for all $z \in \mathbb{C}$.

The variable of the integral defining $y$ is $t$ and for $t \in \mathbb{C}$ with $|t|$ very large, the cubic term in the exponent dominates. Hence consider polar form $t=|t|e^{i\theta}$ and compute $$e^{-\frac{t^3}{3}} = \exp\left( \frac{-|t|^3 e^{3i\theta}}{3} \right).$$ Notice that the inequality $\mathrm{Re} \hspace{2pt} e^{3i\theta} > 0$ forces $\cos(3\theta)>0$ yielding three sectors defined by $\theta$: $$-\dfrac{\pi}{6} < \theta < \dfrac{\pi}{6},$$ $$\dfrac{\pi}{2} < \theta < \dfrac{5\pi}{6},$$ $$\dfrac{7\pi}{6} < \theta < \dfrac{3\pi}{2}.$$ Picking the contour $\gamma$ so that it tends to complex infinity inside two of the sectors forces the condition $f(t)e^{zt} \Bigg |_{\gamma}=0$. █

References