Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(External links)
Line 21: Line 21:
 
=External links=
 
=External links=
 
*[https://www.youtube.com/playlist?list=PL32446FDD4DA932C9 15 Videos about the Riemann $\zeta$ function]
 
*[https://www.youtube.com/playlist?list=PL32446FDD4DA932C9 15 Videos about the Riemann $\zeta$ function]
[http://www.claymath.org/sites/default/files/ezeta.pdf English translation of Riemann's paper "On the number of prime numbers less than a given quantity"]
+
*[http://www.claymath.org/sites/default/files/ezeta.pdf English translation of Riemann's paper "On the number of prime numbers less than a given quantity"]

Revision as of 00:23, 19 October 2014

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{n^z}.$$

Riemannzeta.png

Properties

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof:

Proposition (Euler Product): $\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}}$

Proof:

External links