Difference between revisions of "Dedekind eta"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
 
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
  
[[File:DedekindetaRe.png|500px]]
+
<div align="center">
 
+
<gallery>
[[File:DedekindetaIm.png|500px]]
+
File:DedekindetaRe.png|Real part of $\eta$.
 +
File:DedekindetaIm.png|Imaginary part of $\eta$.
 +
</gallery>
 +
</div>
  
 
=References=
 
=References=
 
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]
 
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]

Revision as of 03:23, 19 January 2015

Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$

References

A collection of over 6200 identities for the Dedekind Eta Function