Difference between revisions of "Arcsin"
From specialfunctionswiki
Line 36: | Line 36: | ||
=References= | =References= | ||
− | *[http://mathworld.wolfram.com/InverseSine.html Weisstein, Eric W. "Inverse Sine." From MathWorld--A Wolfram Web Resource.] | + | *[http://mathworld.wolfram.com/InverseSine.html Weisstein, Eric W. "Inverse Sine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseSine.html] |
Revision as of 01:34, 19 October 2014
The $\mathrm{arcsin}$ function is the inverse function of the sine function.
500px
Properties
Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$
Proof: █
Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$
Proof: █
Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$
Proof: █
Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$
Proof: █