Difference between revisions of "Matsumoto zeta function"
From specialfunctionswiki
(Created page with "Let $P(z)$ be a polynomial. Define the Matsumoto zeta function by $$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$") |
|||
Line 1: | Line 1: | ||
Let $P(z)$ be a [[polynomial]]. Define the Matsumoto zeta function by | Let $P(z)$ be a [[polynomial]]. Define the Matsumoto zeta function by | ||
$$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$ | $$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:53, 24 May 2016
Let $P(z)$ be a polynomial. Define the Matsumoto zeta function by $$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$