Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 1: Line 1:
The $\mathrm{arcsin}$ function is the inverse function of the [[sine]] function. <br />
+
The function $\mathrm{arcsin} \colon [-1,1] \rightarrow \left[ \dfrac{-\pi}{2}, \dfrac{\pi}{2} \right]$ is the [[inverse function]] of the [[sine]] function. <br />
[[File:Arcsin.png|500px]]
 
  
[[File:Complex arcsin.jpg|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Arcsin.png|Graph of $\mathrm{arcsin}$ on $[-1,1]$.
 +
File:Complex arcsin.jpg|[[Domain coloring]] of [[analytic continuation]].
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 04:32, 31 October 2014

The function $\mathrm{arcsin} \colon [-1,1] \rightarrow \left[ \dfrac{-\pi}{2}, \dfrac{\pi}{2} \right]$ is the inverse function of the sine function.

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$$

Proof: If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use implicit differentiation with respect to $z$ to get $$\cos(y)y'=1.$$ Substitution back in $y=\mathrm{arcsin(z)}$ yields the formula $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █ $$

Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$

Proof:

Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$

Proof:

Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$

Proof:

References