Difference between revisions of "Arccos"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the [[inverse function]] of the [[cosine]] function.
 
The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the [[inverse function]] of the [[cosine]] function.
  
 +
<div align="center">
 
<gallery>
 
<gallery>
 
File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$.
 
File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$.
 
File:Complex arccos.jpg|Domain coloring of analytic continuation to $\mathbb{C}$.
 
File:Complex arccos.jpg|Domain coloring of analytic continuation to $\mathbb{C}$.
 
</gallery>
 
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 04:11, 31 October 2014

The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the inverse function of the cosine function.

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$$

Proof: If $y=\mathrm{arccos}(z)$ then $\cos(y)=z$. Now use implicit differentiation with respect to $z$ to get $$-\sin(y)y'=1.$$ If we write $\theta=\mathrm{arccos}(z)$ then the following image shows that $\cos(\mathrm{arccos}(z))=\sqrt{1-z^2}$:

Sin(arccos(z)).png

Hence substituting back in $y=\mathrm{arccos}(z)$ yields the formula
$$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$

Proposition: $$\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$$

Proof:

Proposition: $$\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$$

Proof:

References

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html