Difference between revisions of "Arccot"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
There are two functions commonly called $\mathrm{arccot}$, which refers to inverse functions of the [[cotangent | $\mathrm{cot}$]] function. First is the function $\mathrm{arccot_1}\colon \mathbb{R} \rightarrow (0,\pi)$ which results from restricting cotangent to $(0,\pi)$ and second is the function $\mathrm{arccot_2} \colon \mathbb{R} \rightarrow \left( -\dfrac{\pi}{2}, \dfrac{\pi}{2} \right) \setminus \{0\}$ which results from restricting cotangent to $\left( -\dfrac{\pi}{2}, \dfrac{\pi}{2} \right)$.  
+
There are two functions commonly called $\mathrm{arccot}$, which refers to inverse functions of the [[cotangent | $\mathrm{cot}$]] function. First is the function $\mathrm{arccot_1}\colon \mathbb{R} \rightarrow (0,\pi)$ which results from restricting cotangent to $(0,\pi)$ and second is the function $\mathrm{arccot_2} \colon \mathbb{R} \rightarrow \left( -\dfrac{\pi}{2}, \dfrac{\pi}{2} \right) \setminus \{0\}$ which results from restricting cotangent to $\left( -\frac{\pi}{2}, \frac{\pi}{2} \right)$.  
  
 
<div align="center">
 
<div align="center">

Revision as of 05:43, 31 October 2014

There are two functions commonly called $\mathrm{arccot}$, which refers to inverse functions of the $\mathrm{cot}$ function. First is the function $\mathrm{arccot_1}\colon \mathbb{R} \rightarrow (0,\pi)$ which results from restricting cotangent to $(0,\pi)$ and second is the function $\mathrm{arccot_2} \colon \mathbb{R} \rightarrow \left( -\dfrac{\pi}{2}, \dfrac{\pi}{2} \right) \setminus \{0\}$ which results from restricting cotangent to $\left( -\frac{\pi}{2}, \frac{\pi}{2} \right)$.

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arccot}(z) = -\dfrac{1}{z^2+1}$$

Proof: If $y=\mathrm{arccot}(z)$ then $\cot(y)=z$. Now use implicit differentiation with respect to $z$ to get $$-\csc^2(y)y'=1.$$ Substituting back in $y=\mathrm{arccos}(z)$ yields the formula $$\dfrac{d}{dz} \mathrm{arccot}(z) = -\dfrac{1}{\csc^2(\mathrm{arccot}(z))} = -\dfrac{1}{z^2+1}.█$$

References

Which is the correct graph of arccot x?