Difference between revisions of "Cosine"

From specialfunctionswiki
Jump to: navigation, search
Line 7: Line 7:
 
File:Complex cos.jpg|Domain coloring of analytic continuation of $\cos$ to $\mathbb{C}$.
 
File:Complex cos.jpg|Domain coloring of analytic continuation of $\cos$ to $\mathbb{C}$.
 
</gallery>
 
</gallery>
 +
</div>
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> $$\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> $$\cos(x) = \prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 
</div>
 
</div>

Revision as of 05:55, 31 October 2014

The cosine function, $\cos \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem $$y=-y;y(0)=1,y'(0)=0.$$

Properties

Proposition: $$\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$$

Proof:

Proposition: $$\cos(x) = \prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$$

Proof: