Difference between revisions of "Sine integral"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\mathrm{Si}(z) = \displaystyle\int_0^z \dfrac{\sin t}{t} dt; |\mathrm{arg} z|<\pi.$$ | $$\mathrm{Si}(z) = \displaystyle\int_0^z \dfrac{\sin t}{t} dt; |\mathrm{arg} z|<\pi.$$ | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Si.png| Graph of $\mathrm{Si}$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Videos= | ||
+ | [https://www.youtube.com/watch?v=hMW7aIYoN7U Laplace Transform of Sine Integral] | ||
=References= | =References= | ||
*[http://dlmf.nist.gov/8.21 Generalized Sine and Cosine Integrals] | *[http://dlmf.nist.gov/8.21 Generalized Sine and Cosine Integrals] |
Revision as of 05:03, 19 January 2015
The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \dfrac{\sin t}{t} dt; |\mathrm{arg} z|<\pi.$$
- Si.png
Graph of $\mathrm{Si}$.
Videos
Laplace Transform of Sine Integral