Difference between revisions of "Binomial coefficient"

From specialfunctionswiki
Jump to: navigation, search
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> $\displaystyle{n \choose k} = {n \choose {n-k}} = (-1)^k {{k-n-1} \choose k}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> $\displaystyle{{n+1} \choose k} = {n \choose k} + {n \choose {k-1}}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> ${n \choose 0} = {n \choose n} = 1$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> $1 + \displaystyle {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> $1 - \displaystyle {n \choose 1}  + {n \choose 2} - \ldots + (-1)^n {n \choose n} =0$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem (Binomial Theorem):</strong> $(a+b)^n = \displaystyle\sum_{k=0}^n {n \choose k} a^k b^{n-k}$
 
<strong>Theorem (Binomial Theorem):</strong> $(a+b)^n = \displaystyle\sum_{k=0}^n {n \choose k} a^k b^{n-k}$

Revision as of 05:27, 11 January 2015

The binomial coefficients are defined by the formula $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$

Properties

Proposition: $\displaystyle{n \choose k} = {n \choose {n-k}} = (-1)^k {{k-n-1} \choose k}$

Proof:

Proposition: $\displaystyle{{n+1} \choose k} = {n \choose k} + {n \choose {k-1}}$

Proof:

Proposition: ${n \choose 0} = {n \choose n} = 1$

Proof:

Proposition: $1 + \displaystyle {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n$

Proof:

Proposition: $1 - \displaystyle {n \choose 1} + {n \choose 2} - \ldots + (-1)^n {n \choose n} =0$

Proof:

Theorem (Binomial Theorem): $(a+b)^n = \displaystyle\sum_{k=0}^n {n \choose k} a^k b^{n-k}$

Proof:

References

Abramowitz and Stegun