Difference between revisions of "Sine"

From specialfunctionswiki
Jump to: navigation, search
Line 22: Line 22:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
{{:Gamma-Sine_Relation}}
  
 
=References=
 
=References=
 
[http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-number-theory-fall-2006/projects/chan.pdf The sine product formula and the gamma function]
 
[http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-number-theory-fall-2006/projects/chan.pdf The sine product formula and the gamma function]

Revision as of 04:16, 20 March 2015

The sine function $\sin \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem $y=-y;y(0)=0,y'(0)=1$.

Properties

Proposition: $\sin(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kx^{2k+1}}{(2k+1)!}$

Proof: proof goes here █

Proposition: $\sin(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right)$

Proof: proof goes here █

  1. REDIRECT Gamma(z)Gamma(1-z)=pi/sin(pi z)

References

The sine product formula and the gamma function