Difference between revisions of "Hadamard gamma"

From specialfunctionswiki
Jump to: navigation, search
Line 12: Line 12:
 
</div>
 
</div>
  
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong>
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> proof goes here █
 
</div>
 
</div>
 
 
=References=
 
=References=
 
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]
 
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]

Revision as of 22:52, 13 January 2015

The Hadamard gamma function is defined by the formula $$H(x)=\dfrac{1}{\Gamma(1-x)} \dfrac{d}{dx} \log \left( \dfrac{\Gamma(\frac{1}{2}-\frac{x}{2})}{\Gamma(1-\frac{x}{2})} \right),$$ where $\Gamma$ denotes the gamma function.

Properties

Theorem: We can write $$H(x)=\dfrac{\psi(1-\frac{x}{2})-\psi(\frac{1}{2}-\frac{x}{2})}{2\Gamma(1-x)},$$ where $\psi$ is the digamma function.

Proof: proof goes here █

References

Is the Gamma function misdefined?