Difference between revisions of "Cosine integral"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$ | $$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$ | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Ci.png|Graph of $\mathrm{arccos}$ on $(0,20)$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
=Videos= | =Videos= |
Revision as of 06:51, 5 April 2015
The cosine integral is defined by $$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$
- Ci.png
Graph of $\mathrm{arccos}$ on $(0,20)$.
Videos
Laplace transform of cosine integral