Difference between revisions of "Cosine integral"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$
 
$$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$
  
[[File:Ci.png|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Ci.png|Graph of $\mathrm{arccos}$ on $(0,20)$.
 +
</gallery>
 +
</div>
 +
 
  
 
=Videos=
 
=Videos=

Revision as of 06:51, 5 April 2015

The cosine integral is defined by $$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$


Videos

Laplace transform of cosine integral

References