Difference between revisions of "Reciprocal gamma"
From specialfunctionswiki
m (Tom moved page Reciprocal gamma function to Reciprocal gamma) |
|||
Line 1: | Line 1: | ||
The reciprocal gamma function is the function $\dfrac{1}{\Gamma(z)}$, where $\Gamma$ denotes the [[gamma function]]. | The reciprocal gamma function is the function $\dfrac{1}{\Gamma(z)}$, where $\Gamma$ denotes the [[gamma function]]. | ||
− | [[File:Complex Reciprocal Gamma.jpg| | + | [[500px]] |
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complex Reciprocal Gamma.jpg|[[Domain coloring]] of [[analytic continuation]] $\dfrac{1}{\Gamma}$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | {{:Gamma function Weierstrass product}} |
Revision as of 23:50, 19 May 2015
The reciprocal gamma function is the function $\dfrac{1}{\Gamma(z)}$, where $\Gamma$ denotes the gamma function.
- Complex Reciprocal Gamma.jpg
Domain coloring of analytic continuation $\dfrac{1}{\Gamma}$.