Difference between revisions of "Dirichlet eta"
From specialfunctionswiki
m (Tom moved page Dirichlet eta function to Dirichlet eta) |
|||
Line 3: | Line 3: | ||
This series is clearly the [[Riemann zeta function]] with alternating terms. | This series is clearly the [[Riemann zeta function]] with alternating terms. | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Complex Dirichlet eta function.jpg|[[Domain coloring]] of [[domain coloring]] of $\eta(z)$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | [[500px]] |
Revision as of 23:20, 1 April 2015
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.
- Complex Dirichlet eta function.jpg
Domain coloring of domain coloring of $\eta(z)$.