Difference between revisions of "Hurwitz zeta"
From specialfunctionswiki
m (Tom moved page Hurwitz zeta function to Hurwitz zeta) |
|||
Line 1: | Line 1: | ||
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$, | The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$, | ||
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$ | $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$ | ||
+ | |||
+ | =Properties= | ||
+ | {{:Catalan's constant using Hurwitz zeta}} |
Revision as of 01:18, 21 March 2015
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$, $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
Contents
Properties
Theorem
The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.