Difference between revisions of "Prime zeta P"
From specialfunctionswiki
m (Tom moved page Prime zeta function to Prime zeta P) |
|||
Line 4: | Line 4: | ||
[[File:Primezeta.png|500px]] | [[File:Primezeta.png|500px]] | ||
+ | |||
+ | =References= | ||
+ | Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT) 8 1968 187--202. |
Revision as of 22:51, 6 May 2015
The prime zeta function is defined by $$P(z) = \displaystyle\sum_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p^z},$$ where $\mathrm{Re}(z)>1$. It can be extended outside of this domain via analytic continuation.
References
Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT) 8 1968 187--202.