Difference between revisions of "Prime counting"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula
 
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula
 
$$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
 
$$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Primecountingfunction.png|Plot of $\pi(x)$ over $[0,50]$.
 +
File:Primecountingfunctiondividedbyxoverlogx.png|Plot of $\frac{\pi(x)}{x/\log(x)}$ on $[0,1000000]$.
 +
</gallery>
 +
</div>
 +
  
 
=Properties=
 
=Properties=

Revision as of 06:31, 5 April 2015

The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$


Properties

Theorem (Prime Number Theorem): The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1.$$

Proof:

References

Newman's short proof of the prime number theorem