Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The exponential integrals are
 
The exponential integrals are
$$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} dt; |\mathrm{arg}(-z)|<\pi$$
+
$$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} dt; |\mathrm{arg}(-z)|<\pi,$$
 +
$$E_1(z) = \displaystyle\int_z^{\infty} \dfrac{e^{-t}}{t}dt;|\mathrm{arg \hspace{2pt}}z<\pi|,$$
 
and
 
and
$$E_1(z) = \displaystyle\int_z^{\infty} \dfrac{e^{-t}}{t}dt;|\mathrm{arg \hspace{2pt}}z<\pi|.$$
+
$$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} dt.$$
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong> The exponential integral $\mathrm{Ei}$ is related to the [[logarithmic integral]] by the formula
 
<strong>Proposition:</strong> The exponential integral $\mathrm{Ei}$ is related to the [[logarithmic integral]] by the formula
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$
+
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)); n=0,1,2,\ldots, \mathrm{Re}(z)>0$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 14: Line 15:
 
=Videos=
 
=Videos=
 
[https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral]<br />
 
[https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral]<br />
 +
 +
=References=
 +
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_228.htm Exponential Integral and Related Functions]

Revision as of 01:35, 2 February 2015

The exponential integrals are $$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} dt; |\mathrm{arg}(-z)|<\pi,$$ $$E_1(z) = \displaystyle\int_z^{\infty} \dfrac{e^{-t}}{t}dt;|\mathrm{arg \hspace{2pt}}z<\pi|,$$ and $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} dt.$$

Properties

Proposition: The exponential integral $\mathrm{Ei}$ is related to the logarithmic integral by the formula $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)); n=0,1,2,\ldots, \mathrm{Re}(z)>0$$

Proof:

Videos

Laplace transform of exponential integral

References

Exponential Integral and Related Functions