Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(External links)
Line 36: Line 36:
 
*[http://www.claymath.org/sites/default/files/ezeta.pdf English translation of Riemann's paper "On the number of prime numbers less than a given quantity"]
 
*[http://www.claymath.org/sites/default/files/ezeta.pdf English translation of Riemann's paper "On the number of prime numbers less than a given quantity"]
 
*[http://www.uam.es/personal_pdi/ciencias/cillerue/Curso/zeta2.pdf Evaluating $\zeta(2)$]
 
*[http://www.uam.es/personal_pdi/ciencias/cillerue/Curso/zeta2.pdf Evaluating $\zeta(2)$]
 +
*[https://www.youtube.com/watch?v=yhtcJPI6AtY The Riemann Hypothesis: How to make $1 Million Without Getting Out of Bed]

Revision as of 22:00, 1 March 2015

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$

Properties

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof:

Proposition (Euler Product): $\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}}$

Proof:

Proposition: Let $n$ be a positive integer. Then $$\zeta(2n)=(-1)^{n+1}\dfrac{B_{2n}(2\pi)^{2n}}{2(2n)!},$$ where $B_n$ denotes the Bernoulli numbers.

Proof:

External links