Difference between revisions of "Jacobi sn"
From specialfunctionswiki
(→Properties) |
(→Properties) |
||
Line 6: | Line 6: | ||
#$\mathrm{sn \hspace{2pt}}(0)=0$ | #$\mathrm{sn \hspace{2pt}}(0)=0$ | ||
#$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$ | #$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$ | ||
+ | #$\mathrm{sn \hspace{2pt}}$ is an odd function |
Revision as of 07:30, 10 March 2015
Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{sn \hspace{2pt}}u = \sin \phi = x.$$
Properties
- $\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$
- $\mathrm{sn \hspace{2pt}}(0)=0$
- $m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$
- $\mathrm{sn \hspace{2pt}}$ is an odd function