Difference between revisions of "Jacobi sn"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
#$\mathrm{sn \hspace{2pt}}$ is an odd function
 
#$\mathrm{sn \hspace{2pt}}$ is an odd function
 
#$\dfrac{d}{du}\mathrm{sn \hspace{2pt}} u =\mathrm{cn \hspace{2pt}}(u)\mathrm{dn \hspace{2pt}}(u)$
 
#$\dfrac{d}{du}\mathrm{sn \hspace{2pt}} u =\mathrm{cn \hspace{2pt}}(u)\mathrm{dn \hspace{2pt}}(u)$
 +
 +
=References=
 +
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall]

Revision as of 07:43, 10 March 2015

Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{sn \hspace{2pt}}u = \sin \phi = x.$$

Properties

  1. $\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$
  2. $\mathrm{sn \hspace{2pt}}(0)=0$
  3. $m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$
  4. $\mathrm{sn \hspace{2pt}}$ is an odd function
  5. $\dfrac{d}{du}\mathrm{sn \hspace{2pt}} u =\mathrm{cn \hspace{2pt}}(u)\mathrm{dn \hspace{2pt}}(u)$

References

Special functions by Leon Hall