Difference between revisions of "Weierstrass factorization of sine"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\sin$$(x) = x \displayst...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>[[Weierstrass factorization of sine|Proposition]]:</strong> [[Sine|$\sin$]]$(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right)$ | + | <strong>[[Weierstrass factorization of sine|Proposition]]:</strong> The [[Weierstrass factorization]] of [[Sine|$\sin(x)$]] is |
+ | $$\sin(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right).$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 05:04, 20 March 2015
Proposition: The Weierstrass factorization of $\sin(x)$ is $$\sin(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right).$$
Proof: █