Difference between revisions of "Taylor series of cosine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$ <div class="mw-col...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Proposition:</strong> $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$
+
<strong>[[Taylor series of cosine|Proposition]]:</strong> [[Cosine|$\cos$]]$(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 05:00, 20 March 2015

Proposition: $\cos$$(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$

Proof: