Difference between revisions of "Taylor series of cosine"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>[[Taylor series of cosine|Proposition]]:</strong> | + | <strong>[[Taylor series of cosine|Proposition]]:</strong> The following formula holds: |
+ | $$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!},$$ | ||
+ | where $\cos$ denotes the [[cosine]] function. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 05:43, 8 February 2016
Proposition: The following formula holds: $$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!},$$ where $\cos$ denotes the cosine function.
Proof: █