Difference between revisions of "Derivative of sech"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\mathrm{sech}$$(x)=-\mat...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Derivative of sech|Proposition]]:</strong> $\dfrac{d}{dx}$[[Sech|$\mathrm{sech}$]]$(x)=-\mathrm{sech}(x)$[[Tanh|$\tanh$]]$(x)$
+
<strong>[[Derivative of sech|Theorem]]:</strong> The following formula holds:
 +
$$\dfrac{\mathrm{d}}{\mathrm{d}x}=-\mathrm{sech}(z)\mathrm{tanh}(z),$$
 +
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]] and $\mathrm{tanh}$ denotes the [[tanh|hyperbolic tangent]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 08:28, 16 May 2016

Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x}=-\mathrm{sech}(z)\mathrm{tanh}(z),$$ where $\mathrm{sech}$ denotes the hyperbolic secant and $\mathrm{tanh}$ denotes the hyperbolic tangent.

Proof: