Difference between revisions of "Derivative of coth"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\mathrm{coth}$$(x)=-$[[Csch|$\mathrm{csch}$]...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Derivative of coth|Proposition]]:</strong> $\dfrac{d}{dx}$[[Coth|$\mathrm{coth}$]]$(x)=-$[[Csch|$\mathrm{csch}$]]$^2(x)$
+
<strong>[[Derivative of coth|Proposition]]:</strong> The following formula holds:
 +
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$
 +
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 08:24, 16 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent and $\mathrm{csch}$ denotes the hyperbolic cosecant.

Proof: