Difference between revisions of "Derivative of coth"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\mathrm{coth}$$(x)=-$[[Csch|$\mathrm{csch}$]...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>[[Derivative of coth|Proposition]]:</strong> $\dfrac{d}{ | + | <strong>[[Derivative of coth|Proposition]]:</strong> The following formula holds: |
+ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ | ||
+ | where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 08:24, 16 May 2016
Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{coth}(z) = -\mathrm{csch}^2(z),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent and $\mathrm{csch}$ denotes the hyperbolic cosecant.
Proof: █