Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
The $\mathrm{arcsinh}$ function is the inverse function of the [[sinh|hyperbolic sine]] function defined by
 +
$$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$
 +
 
[[File:Complex ArcSinh.jpg|500px]]
 
[[File:Complex ArcSinh.jpg|500px]]
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>
 
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>

Revision as of 05:44, 16 May 2015

The $\mathrm{arcsinh}$ function is the inverse function of the hyperbolic sine function defined by $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$

Complex ArcSinh.jpg

Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$

Proof:

<center>Inverse hyperbolic trigonometric functions
</center>