Difference between revisions of "Barnes G"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$G(1+z)=(2\pi)^{\frac{z}{2}} \exp \left( - \dfrac{z+z^2(1+\gamma)}{2} \right) \displaystyle\prod_{k=1}^{\infty} \left\{ \left( 1+\dfrac{z}{k} \right)^k \exp \left( \dfrac{z^2}{2k}-z \right) \right\},$$
 
$$G(1+z)=(2\pi)^{\frac{z}{2}} \exp \left( - \dfrac{z+z^2(1+\gamma)}{2} \right) \displaystyle\prod_{k=1}^{\infty} \left\{ \left( 1+\dfrac{z}{k} \right)^k \exp \left( \dfrac{z^2}{2k}-z \right) \right\},$$
 
where $\exp$ denotes the [[exponential function]] and $\gamma$ denotes the [[Euler-Mascheroni constant]].
 
where $\exp$ denotes the [[exponential function]] and $\gamma$ denotes the [[Euler-Mascheroni constant]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Barnesgplot.png|Graph of $G$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 00:40, 24 May 2016

The Barnes $G$ function is defined by the following Weierstrass factorization: $$G(1+z)=(2\pi)^{\frac{z}{2}} \exp \left( - \dfrac{z+z^2(1+\gamma)}{2} \right) \displaystyle\prod_{k=1}^{\infty} \left\{ \left( 1+\dfrac{z}{k} \right)^k \exp \left( \dfrac{z^2}{2k}-z \right) \right\},$$ where $\exp$ denotes the exponential function and $\gamma$ denotes the Euler-Mascheroni constant.

Properties

Theorem: The following formula holds: $$G(z+1)=\Gamma(z)G(z)$$ with normalization $G(1)=1$.

Proof:

Corollary: The following values hold: $$G(n) = \left\{ \begin{array}{ll} 0 &; n=-1,-2,\ldots \\ \displaystyle\prod_{i=0}^{n-2} i!&; n=0,1,2,\ldots \end{array} \right.$$

Proof: