Difference between revisions of "Lerch transcendent polylogarithm"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\Phi(z,n,1)=\dfrac{\math...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ | $$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ | ||
where $\Phi$ denotes the [[Lerch transcendent]] and $\mathrm{Li_n}$ denotes the [[polylogarithm]]. | where $\Phi$ denotes the [[Lerch transcendent]] and $\mathrm{Li_n}$ denotes the [[polylogarithm]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 16:33, 20 June 2016
Theorem
The following formula holds: $$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ where $\Phi$ denotes the Lerch transcendent and $\mathrm{Li_n}$ denotes the polylogarithm.