Difference between revisions of "Catalan's constant"

From specialfunctionswiki
Jump to: navigation, search
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
{{:Catalan's constant using Dirichlet beta}}
 
{{:Catalan's constant using Dirichlet beta}}
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>[[Catalan's constant using Legendre chi]]:</strong> The following formula holds:
 +
$$K=-i\chi_2(i),$$
 +
where $K$ is [[Catalan's constant]] and $\chi$ denotes the [[Legendre chi]] function.
 +
where
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
{{:Catalan's constant using Hurwitz zeta}}

Revision as of 01:17, 21 March 2015

Catalan's constant is $$G=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$ This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the Dirichlet beta function.

Properties

Theorem

The following formula holds: $$K=\beta(2),$$ where $K$ is Catalan's constant and $\beta$ denotes the Dirichlet beta function.

Proof

References

Catalan's constant using Legendre chi: The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is Catalan's constant and $\chi$ denotes the Legendre chi function. where

Proof:

Theorem

The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.

Proof

References