Difference between revisions of "Catalan's constant using Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$K=\dfrac{\pi}{24} -...")
 
Line 2: Line 2:
 
<strong>[[Catalan's constant using Hurwitz zeta|Proposition]]:</strong> The following formula holds:
 
<strong>[[Catalan's constant using Hurwitz zeta|Proposition]]:</strong> The following formula holds:
 
$$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$
 
$$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$
where $K$ is [[Catalan's constant]], $A$ is the [[Glaisher-Kinkelin constant]], and $\zeta'$ denotes the partial derivative of the [[Hurwitz zeta]] function with respect to the first argument.
+
where $K$ is [[Catalan's constant]], $A$ is the [[Glaisher–Kinkelin constant]], and $\zeta'$ denotes the partial derivative of the [[Hurwitz zeta]] function with respect to the first argument.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 01:18, 21 March 2015

Proposition: The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.

Proof: