Difference between revisions of "Arctanh"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 +
File:Arctanhplot.png|Plot of $\mathrm{arctanh}$ on $(-1,1)$.
 
File:Complex ArcTanh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arctanh}$.
 
File:Complex ArcTanh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arctanh}$.
 
</gallery>
 
</gallery>

Revision as of 09:33, 9 November 2015

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \chi_2(z) = \dfrac{\mathrm{arctanh}(z)}{z},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.

Proof

References

<center>Inverse hyperbolic trigonometric functions
</center>