Difference between revisions of "Jacobi P"
From specialfunctionswiki
(\lef) |
|||
Line 1: | Line 1: | ||
− | The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are | + | The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are defined by |
− | $$\dfrac{ | + | $$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$ |
− | + | where ${}_2F_1$ is the [[Hypergeometric pFq|generalized hypergeometries series]]. | |
− | $$ | + | |
− | + | =Properties= | |
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> ([[Rodrigues' formula]]) The following formula holds: | ||
+ | $$P_n^{(\alpha,\beta)}(z)=\dfrac{(-1)^n}{2^nn!} (1-z)^{-\alpha}(1+z)^{-\beta} \dfrac{d^n}{dz^n} \left[(1-z)^{\alpha}(1+z)^{\beta}(1-z^2)^n \right].$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
{{:Orthogonal polynomials footer}} | {{:Orthogonal polynomials footer}} |
Revision as of 20:17, 23 March 2015
The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are defined by $$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$ where ${}_2F_1$ is the generalized hypergeometries series.
Properties
Theorem: (Rodrigues' formula) The following formula holds: $$P_n^{(\alpha,\beta)}(z)=\dfrac{(-1)^n}{2^nn!} (1-z)^{-\alpha}(1+z)^{-\beta} \dfrac{d^n}{dz^n} \left[(1-z)^{\alpha}(1+z)^{\beta}(1-z^2)^n \right].$$
Proof: █