Difference between revisions of "Bernoulli polynomial and Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$B_n(x)=-n \zeta(1-n,x),...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Bernoulli polynomial and Hurwitz zeta|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$B_n(x)=-n \zeta(1-n,x),$$
 
$$B_n(x)=-n \zeta(1-n,x),$$
 
where $B_n$ denotes the [[Bernoulli B|Bernoulli polynomial]] and $\zeta$ denotes the [[Hurwitz zeta]] function.
 
where $B_n$ denotes the [[Bernoulli B|Bernoulli polynomial]] and $\zeta$ denotes the [[Hurwitz zeta]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:13, 16 June 2016

Theorem

The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.

Proof

References