Difference between revisions of "Bessel polynomial generalized hypergeometric"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$y_n(x)={}_2F_0 \...") |
|||
Line 2: | Line 2: | ||
<strong>[[Bessel polynomial generalized hypergeometric|Theorem]]:</strong> The following formula holds: | <strong>[[Bessel polynomial generalized hypergeometric|Theorem]]:</strong> The following formula holds: | ||
$$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$ | $$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$ | ||
− | where $y_n(x)$ denotes a [[Bessel polynomial]] and ${}_2F_0$ denotes the [[generalized hypergeometric function]]. | + | where $y_n(x)$ denotes a [[Bessel polynomial]] and ${}_2F_0$ denotes the [[hypergeometric pfq|generalized hypergeometric function]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 10:17, 23 March 2015
Theorem: The following formula holds: $$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$ where $y_n(x)$ denotes a Bessel polynomial and ${}_2F_0$ denotes the generalized hypergeometric function.
Proof: █