Difference between revisions of "Chebyshev U"
From specialfunctionswiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>Theorem | + | <strong>Theorem:</strong> The following formula holds: |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
$$\int_{-1}^1 \dfrac{U_m(x)U_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} | $$\int_{-1}^1 \dfrac{U_m(x)U_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} | ||
0 &; m \neq n \\ | 0 &; m \neq n \\ |
Revision as of 10:35, 23 March 2015
The Chebyshev polynomials of the second kind are orthogonal polynomials defined by $$U_n(x) = \sin(n \mathrm{arcsin}(x)).$$
Properties
Theorem: The following formula holds: $$\int_{-1}^1 \dfrac{U_m(x)U_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} 0 &; m \neq n \\ \dfrac{\pi}{2} &; m=n\neq 0\\ 0 &; m=n=0. \end{array} \right.$$
Proof: █