Difference between revisions of "Lefschetz zeta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $f$ be a function. The Lefschetz zeta function is $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ where $L(f^n)$ is the Lefsche...")
 
 
Line 2: Line 2:
 
$$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$
 
$$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$
 
where $L(f^n)$ is the [[Lefschetz number]] of the $n$th iterate of $f$
 
where $L(f^n)$ is the [[Lefschetz number]] of the $n$th iterate of $f$
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:52, 24 May 2016

Let $f$ be a function. The Lefschetz zeta function is $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ where $L(f^n)$ is the Lefschetz number of the $n$th iterate of $f$