Difference between revisions of "Lefschetz zeta function"
From specialfunctionswiki
(Created page with "Let $f$ be a function. The Lefschetz zeta function is $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ where $L(f^n)$ is the Lefsche...") |
|||
Line 2: | Line 2: | ||
$$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ | $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ | ||
where $L(f^n)$ is the [[Lefschetz number]] of the $n$th iterate of $f$ | where $L(f^n)$ is the [[Lefschetz number]] of the $n$th iterate of $f$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:52, 24 May 2016
Let $f$ be a function. The Lefschetz zeta function is $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ where $L(f^n)$ is the Lefschetz number of the $n$th iterate of $f$