Difference between revisions of "Prime counting"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 11: Line 11:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
{{:Prime number theorem, pi and x/log(x)}}
<strong>Theorem (Prime Number Theorem):</strong> The function $\pi(x)$ obeys the formula
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>
 
</div>
 
</div>
 
  
 
=References=
 
=References=
 
[http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf Newman's short proof of the prime number theorem]
 
[http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf Newman's short proof of the prime number theorem]

Revision as of 06:35, 5 April 2015

The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$


Properties

Theorem

The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$ where $\pi$ denotes the prime counting function and $\log$ denotes the logarithm.

Proof

References

References

Newman's short proof of the prime number theorem