Difference between revisions of "Prime counting"
From specialfunctionswiki
(→Properties) |
|||
Line 8: | Line 8: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
− | |||
=Properties= | =Properties= | ||
{{:Prime number theorem, pi and x/log(x)}} | {{:Prime number theorem, pi and x/log(x)}} | ||
+ | {{:Prime number theorem, logarithmic integral}} | ||
=References= | =References= | ||
[http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf Newman's short proof of the prime number theorem] | [http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2975232/fulltext.pdf Newman's short proof of the prime number theorem] |
Revision as of 06:41, 5 April 2015
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
- Primecountingfunction.png
Plot of $\pi(x)$ over $[0,50]$.
- Primecountingfunctiondividedbyxoverlogx.png
Plot of $\frac{\pi(x)}{x/\log(x)}$ on $[0,1000000]$.
Contents
Properties
Theorem
The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$ where $\pi$ denotes the prime counting function and $\log$ denotes the logarithm.
Proof
References
Theorem
The following formula holds: $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\mathrm{li}(x)}=1,$$ where $\pi$ denotes the prime counting function and $\mathrm{li}$ denotes the logarithmic integral.