Difference between revisions of "Golden ratio"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 6: Line 6:
 
$$2\sin(i \log(\varphi))=i,$$
 
$$2\sin(i \log(\varphi))=i,$$
 
where $\sin$ denotes the [[sine]] function, $i$ denotes the [[imaginary number]], $\log$ denotes the [[logarithm]], and $\varphi$ denotes the [[golden ratio]].
 
where $\sin$ denotes the [[sine]] function, $i$ denotes the [[imaginary number]], $\log$ denotes the [[logarithm]], and $\varphi$ denotes the [[golden ratio]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$2\cos(i \log(1+\varphi))=3,$$
 +
where $\cos$ denotes the [[cosine]] function, $i$ denotes the [[imaginary number]], $\log$ denotes the [[logarithm]], and $\varphi$ denotes the [[golden ratio]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █  
 
<strong>Proof:</strong>  █  

Revision as of 04:52, 11 April 2015

The golden ratio is $\varphi = \dfrac{1+\sqrt{5}}{2}.$

Properties

Theorem: The following formula holds: $$2\sin(i \log(\varphi))=i,$$ where $\sin$ denotes the sine function, $i$ denotes the imaginary number, $\log$ denotes the logarithm, and $\varphi$ denotes the golden ratio.

Proof:

Theorem: The following formula holds: $$2\cos(i \log(1+\varphi))=3,$$ where $\cos$ denotes the cosine function, $i$ denotes the imaginary number, $\log$ denotes the logarithm, and $\varphi$ denotes the golden ratio.

Proof:

References

[1]
[2]