Difference between revisions of "Golden ratio"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 19: Line 19:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=Videos=
 +
[https://www.youtube.com/watch?v=4oyyXC5IzEE The Golden Ratio & Fibonacci Numbers: Fact versus Fiction]<br />
  
 
=References=
 
=References=
 
[http://www.johndcook.com/blog/2014/02/17/imaginary-gold/]<br />
 
[http://www.johndcook.com/blog/2014/02/17/imaginary-gold/]<br />
 
[https://plus.google.com/u/0/+AndrewStacey/posts/Yvki1GcVywF]
 
[https://plus.google.com/u/0/+AndrewStacey/posts/Yvki1GcVywF]

Revision as of 19:25, 5 September 2015

The golden ratio is $\varphi = \dfrac{1+\sqrt{5}}{2}.$

Properties

Theorem: The following formula holds: $$2\sin(i \log(\varphi))=i,$$ where $\sin$ denotes the sine function, $i$ denotes the imaginary number, $\log$ denotes the logarithm, and $\varphi$ denotes the golden ratio.

Proof:

Theorem: The following formula holds: $$2\cos(i \log(1+\varphi))=3,$$ where $\cos$ denotes the cosine function, $i$ denotes the imaginary number, $\log$ denotes the logarithm, and $\varphi$ denotes the golden ratio.

Proof:

Videos

The Golden Ratio & Fibonacci Numbers: Fact versus Fiction

References

[1]
[2]