Difference between revisions of "Partial derivative of beta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$\dfra...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Partial derivative of beta function|Theorem]]:</strong> The following formula holds:
 
<strong>[[Partial derivative of beta function|Theorem]]:</strong> The following formula holds:
$$\dfrac{\partial}{\partial x} B(x,y)=B(x,y) \left( \dfrac{\Gamma'(x)}{\Gamma(x)} - \dfrac{\Gamma'(x+y)}{\Gamma(x+y)} \right) = B(x,y)(\psi(x) - \psi(x+y),$$
+
$$\dfrac{\partial}{\partial x} B(x,y)=B(x,y) \left( \dfrac{\Gamma'(x)}{\Gamma(x)} - \dfrac{\Gamma'(x+y)}{\Gamma(x+y)} \right) = B(x,y)(\psi(x) - \psi(x+y)),$$
 
where $B$ denotes the [[Beta function]], $\Gamma$ denotes the [[gamma function]], and $\psi$ denotes the [[digamma function]].
 
where $B$ denotes the [[Beta function]], $\Gamma$ denotes the [[gamma function]], and $\psi$ denotes the [[digamma function]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 21:13, 27 April 2015

Theorem: The following formula holds: $$\dfrac{\partial}{\partial x} B(x,y)=B(x,y) \left( \dfrac{\Gamma'(x)}{\Gamma(x)} - \dfrac{\Gamma'(x+y)}{\Gamma(x+y)} \right) = B(x,y)(\psi(x) - \psi(x+y)),$$ where $B$ denotes the Beta function, $\Gamma$ denotes the gamma function, and $\psi$ denotes the digamma function.

Proof: