Difference between revisions of "Ratio test"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | |||
− | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>Theorem: (The ratio test)</strong> Let $\{a_1,a_2,\ldots\} \subset \mathbb{C}$ and consider the infinite series $\displaystyle\sum_{k=0}^{\infty} a_k.$ Define | <strong>Theorem: (The ratio test)</strong> Let $\{a_1,a_2,\ldots\} \subset \mathbb{C}$ and consider the infinite series $\displaystyle\sum_{k=0}^{\infty} a_k.$ Define |
Revision as of 21:45, 11 April 2015
Theorem: (The ratio test) Let $\{a_1,a_2,\ldots\} \subset \mathbb{C}$ and consider the infinite series $\displaystyle\sum_{k=0}^{\infty} a_k.$ Define $$L=\displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{a_{k+1}}{a_k} \right|.$$
- If $L<1$, then the series converges absolutely,
- if $L>1$, then the series diverges,
- if $L=1$, then the test is inconclusive.
Proof: █