Difference between revisions of "Relationship between Hurwitz zeta and gamma function"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\Gamma(s...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Relationship between Hurwitz zeta and gamma function|Theorem]]:</strong> The following formula holds: | <strong>[[Relationship between Hurwitz zeta and gamma function|Theorem]]:</strong> The following formula holds: | ||
− | $$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} | + | $$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} \mathrm{d}x,$$ |
where $\Gamma$ denotes the [[gamma function]] and $\zeta$ denotes the [[Hurwitz zeta]] function. | where $\Gamma$ denotes the [[gamma function]] and $\zeta$ denotes the [[Hurwitz zeta]] function. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 23:42, 23 May 2016
Theorem: The following formula holds: $$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} \mathrm{d}x,$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Hurwitz zeta function.
Proof: █