Difference between revisions of "Ratio test"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | Let $\{a_1,a_2,\ldots\} \subset \mathbb{C}$ and consider the infinite series $\displaystyle\sum_{k=0}^{\infty} a_k.$ Define | + | |
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem: (The ratio test)</strong> Let $\{a_1,a_2,\ldots\} \subset \mathbb{C}$ and consider the infinite series $\displaystyle\sum_{k=0}^{\infty} a_k.$ Define | ||
$$L=\displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{a_{k+1}}{a_k} \right|.$$ | $$L=\displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{a_{k+1}}{a_k} \right|.$$ | ||
− | |||
− | |||
<ol> | <ol> | ||
− | <li>If $L<1$, then the series converges absolutely,</li> | + | <li>If $L<1$, then the series [[Absolute convergence|converges absolutely]],</li> |
− | <li>if $L>1$, then the series | + | <li>if $L>1$, then the series [[diverge|diverges]],</li> |
<li>if $L=1$, then the test is inconclusive.</li> | <li>if $L=1$, then the test is inconclusive.</li> | ||
</ol> | </ol> | ||
− | <strong>Proof: █</ | + | <div class="mw-collapsible-content"> |
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> |
Revision as of 21:44, 11 April 2015
Theorem: (The ratio test) Let $\{a_1,a_2,\ldots\} \subset \mathbb{C}$ and consider the infinite series $\displaystyle\sum_{k=0}^{\infty} a_k.$ Define $$L=\displaystyle\lim_{k \rightarrow \infty} \left| \dfrac{a_{k+1}}{a_k} \right|.$$
- If $L<1$, then the series converges absolutely,
- if $L>1$, then the series diverges,
- if $L=1$, then the test is inconclusive.
Proof: █